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Variables aléatoires
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Prob(X ∈ E) =

∫
E

pX(x)dx

E

La description mathématique repose sur les concepts de variable aléatoire, vecteur
aléatoire, et signal aléatoire. Spécifiquement, on utilise les symboles X , X , X(·) et

X[·] (majuscules) pour désigner les contre-parties aléatoires des quantités détermin-

istes x ∈ R, x = (x1, . . . , xN ) ∈ R
N , x(·) : R → R et x[·] : Z → R (minuscules); ces

dernières servent alors à décrire des réalisations du processus aléatoire.

Une variable aléatoire réelle X (scalaire) est caractérisée par sa densité de probabilité
pX : R → R

+. Celle-ci permet de calculer la probabilité de tout evènement E ⊆ R.

Prob{X ∈ E} = P(X ∈ E} =

∫
E

pX(x)dx

La notion d’aléatoire apparaît naturellement dans les systèmes de mesure

parce que ce que l’on cherche à mesurer est susceptible de prendre plusieurs valeurs

issues d’un processus (possiblement déterministe) inconnu de l’observateur

parce que les systèmes physiques sont toujours affectés d’un bruit
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Espérance mathématique et produit scalaire
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Relation avec les descripteurs statistiques fondamentaux

Soit f : R → R une transformation (non-linéaire) de la variable aléatoire réelle X . Alors,

la valeur moyenne (ou espérance) de f(X) est donnée par

EX

{
f(X)

}
= E

{
f(X)

} �
=

∫
R

f(x)pX(x)dx,

où l’intégrale peut aussi être interprétée comme un produit scalaire

E

{
f(X)

}
=
〈
pX , f

〉
.

Fonction de répartition: la probabilité que X soit plus petit que x0 ∈ R

x0 �→ P{X ≤ x0

}
=

∫ x0

−∞
pX(x)dx

= (pX ∗ u)(x0) = 〈pX , u(x0 − ·)〉 = E

{
u(x0 −X)

}
Densité de probabilité

x �→ pX(x) = 〈pX , δ(· − x)〉 = EX

{
δ(· − x)

}
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Densité de probabilité et moments
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Valeur centrale ou moyenne

µX = E{X} =

∫
R

x pX(x)dx = µX,1

Une densité de probabilité est positive et d’intégrale 1

pX(x) ≥ 0,

∫
R

pX(x)dx = EX{1} = 1 = µX,0

Moment statistique d’ordre n ∈ N

µX,n = E{Xn} =

∫
R

xnpX(x)dx µ

2σ

pX(x) = 1√
2πσ

e−
(x−µ)2

2σ2

Ecart type (ou dispersion)

σX =
√

E{(X − µX)2}

Variance

Var(X) = E{(X − µX)2} = σ2
X

=

∫
R

(x− µX)2pX(x)dx = µX,2 − µ2
X,1
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Exemples de densités de probabilité
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xn

Pn

pX(x)

Variables aléatoires discrètes

Densités de variables aléatoires de type “continues”

loi uniforme sur [a, b] : puni(x; a, b) =
1

b−a rect
(

x−a
b−a − 1

2

)
loi Gaussienne univariée: pX(x) = 1

σ
√
2π

e−
(x−µ)2

2σ2 ⇔ X ∼ N (µ, σ)

loi exponentielle: pexp(x;λ) = λ · e−λxu(x)

Pour une variable aléatoire X qui ne prend que des valeurs discrètes (xn)
N
n=1, on a

pX(x) =
N∑

n=1

P{X = xn

} · δ(x− xn)

loi binomiale: pbinom(x) = 2−N
N∑

n=0

(
N

n

)
δ(x− xn)
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Extension: vecteurs aléatoires 
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X = (X1, . . . , XN ) où X1, . . . , XN sont des variables aléatoires scalaires

pX(x1, x2)

Opérateur d’espérance (f est une fonction mesurable R
N → R

M )

E{f(X)} =

∫
RN

f(x)pX(x)dx

Vecteur moyenne: µX = E{X} ∈ R
N

Matrice de covariance: CX = E{(X − µX)(X − µX)T } ∈ R
N×N

Densité de probabilité pX : RN → R
+

Probabilité d’un évènement: E est un sous-ensemble de R
N

P(E) = Prob(X ∈ E) =

∫
E

pX(x)dx

Loi Gaussienne (ou normale) multivariée

X ∼ N (µ,C) ⇔ pX(x) = 1√
2π det(C)

e−
1
2 (x−µ)TC−1(x−µ)
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Probabilités conditionnelles — indépendance
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où

pX(x) =
∫
R
pX,Y (x, y)dy

pY (y) =
∫
R
pX,Y (x, y)dx

sont les lois réduites de X et Y .

Ainsi, si X et Y sont indépendants, alors E

{
f(X) · g(Y )

}
= E

{
f(X)

} · E
{
g(Y )

}

Soit pX(x, y) la densité de probabilité du vecteur aléatoire X = (X,Y ). Alors X et Y sont

de lois indépendantes ssi pX(x, y) peut se mettre sous la forme pX(x)pY (y); c-à-d ssi

∂2
(
log pX(x, y)

)
∂x∂y

= 0.

Probabilités conditionnelles

On note pX|Y (x|y) la densité de probabilité de X connaissant Y = y.

Les règles de Bayes donnent les formules suivantes avec X = (X,Y )

pX(x, y) = pX(x) · pY |X(y|x) = pX|Y (x|y) · pY (y)

Bien sûr, si X et Y sont indépendants, alors pY |X(y|x) = pY (y) et pX|Y (x|y) = pX(x).
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Propriétés de l’opérateur d’espérance
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Linéarité

E{aX} = aE{X}, ∀a ∈ C

E{X1 +X2} = E{X1}+ E{X2} (les variables aléatoires X1 et X2 pouvant être dépendantes)

Séparabilité:

E{X} = E

{
(X1, . . . , XN )

}
=
(
E{X1}, . . . ,E{XN})

Opérateur d’expérance: f : R → R

E{f(X)} =

∫
R

f(x)pX(x)dx = 〈f, pX〉

Exemples d’utilisation

E

{
(aX − Y )2

}
= a2 E{X2}+ E{Y 2} − 2aE{XY }

Cov(X,Y )
�
= E

{(
X − E{X})(Y − E{Y })} = E{XY } − E{X}E{Y }

Var(aX + bY ) = a2Var(X) + b2Var(Y ) + 2ab Cov(X,Y )

Expérance conjointe: f : RN → R

E{f(X1, . . . , XN )} =

∫
RN

f(x1, . . . , xN )pX1,...,XN
(x1, . . . , xN )dx1 · · · dxN
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Fonction caractéristique
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Preuve:

Il est particulièrement utile de travailler avec la fonction caractéristique de la variable

aléatoire. Il s’agit tout simplement de la transformée de Fourier de la densité de probabilité

PX(ω) = E

{
e−jωX

}
=

∫
R

pX(x)e−jωxdx = F{pX}(ω)

On peut également calculer tous les moments de X en dérivant cette fonction caractéristique

µX,n = E

{
Xn

}
=

∫
R

xnpX(x)dx = jn
dnPX(ω)

dωn

∣∣∣∣∣
ω=0

PY (ω) = E

{
e−jωY

}
= E

{
e−jω(X1+X2+···+XN )

}
= E

{
e−jωX1

} · E
{
e−jωX2

} · · ·E{e−jωXN
}

= P1(ω) · P2(ω) · · ·PN (ω)︸ ︷︷ ︸
F
{
p1∗p2∗···∗pN

}
(ω)

Théorème

Soient X1, X2, . . . , XN des variables aléatoires indépendantes de lois p1(x), p2(x), . . . , pN (x)

et soit Y = X1 +X2 + · · ·+XN . Alors la densité de probabilité de Y est

pY (y) =
(
p1 ∗ p2 ∗ · · · ∗ pN

)
(y)
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Exemple d’application
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g[n] =

{
1, si f [n] + b[n] ≥ β

0, sinon

12

f [n] test  ≥β g[n]

b[n]

La probabilité d’erreur est alors donnée par

“1” plus probable

scénario equiprobable

Soit un signal numérique f [n] composé de zéros avec une probabilité p0 et de 1 avec

une probabilité (1− p0), transmis à travers un système qui ajoute au signal un bruit b[n]
de loi N (0, σ2). On décide de la valeur reçue par seuillage

Perr = P{g[n] = 1|f [n] = 0
}︸ ︷︷ ︸

1
σ
√

2π

+∞∫

β

e
− (x−0)2

2σ2 dx

· P{f [n] = 0
}︸ ︷︷ ︸

p0

+P{g[n] = 0|f [n] = 1
}︸ ︷︷ ︸

1
σ
√

2π

∫ β
−∞ e

− (x−1)2

2σ2 dx

· P{f [n] = 1
}︸ ︷︷ ︸

1−p0

= p0

(
1
2 − 1

2erf
(

β

σ
√
2

))
+ (1− p0)

(
1
2 − 1

2erf
(

1−β

σ
√
2

))

où erf(x) =
2√
π

x∫
0

e−t2dt.
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Détecteur optimal
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Soit une variable aléatoire X (éventuellement vectorielle) prenant N valeurs distinctes

xk avec la probabilité pk = P{X = xk}. Elle est perturbée par un bruit B de densité

de probabilité q(b) = pB(b) et le récepteur fournit une réalisation y = x+ b.

Problème: Quelle est la méthode qui permet d’associer le signal reçu y à l’une des

valeurs xk avec une probabilité d’erreur minimale?

…

Ek

E1E2

E3

Solution: Le détecteur optimal est la fonction T : y �→ ∑
k xk · Ek

(y) où Ek
(y) est

la fonction indicatrice de l’ensemble Ek qui est défini par les inégalités

y ∈ Ek ⇔ pk · q(y − xk)− pl · q(y − xl) ≥ 0, ∀l �= k

12-Unser / Sig & Sys II

Structure du détecteur optimal
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données du problème

b︸︷︷︸
inconnu,

probabilité connue
q(b)db

x︸︷︷︸
reçu

x︸︷︷︸
à retrouver,

probabilité connue
P{x = xk} = pk

q(⋅) d1≥dl
l≠1

oui

non

q(⋅)
dk≥dl
l≠k

oui

non

q(⋅)

q(⋅) d2≥dl
l≠2

oui

non

  M

  M

−x1

−x2

−xk

−xN

p1

p2

pk

pN

x̃ = x1

x̃ = x2

x̃ = xk

x̃ = xN

d1

d2

dk

dN

ydétectiony = x + b x̃

x + b︸ ︷︷ ︸

⇔

x̃ = xk ⇔ y ∈ Ek ⇔ pk · q(y − xk) ≥ pl · q(y − xl), ∀l �= k
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Détecteur optimal: version “Neural network”
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y ∈ Ek ⇔ log pk + log q(y − xk) ≥ log pl + log q(y − xl), ∀l �= k

−x1

−xk

x̃ = x1

x̃ = x2

x̃ = xk

x̃ = xN

Softmax

P̃1

P̃2

P̃N

log q(·)

log q(·)

log q(·)

log q(·)

log p1

log p2−x2

−xN

log pk

log pN

y

z1

z2

zN

Softmax: P̃k =
exp(zk)∑N
k=1 exp(zk)

⇒ transforme les mesures de vraisemblance en probabilités

12-Unser / Sig & Sys II

Détecteur optimal: preuve
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Le détecteur attribue la valeur xk chaque fois que y ∈ Ek. Alors, les ensembles Ek sont disjoints

et sont tels que
⋃

k Ek = Etot où Etot est l’espace de toutes les valeurs possibles de y.

Les ensembles disjoints Ek qui minimisent Perr vérifient nécessairement

pk · q(y − xk)− pl · q(y − xl) ≥ 0 pour tout y ∈ Ek et l �= k

sinon il suffirait de transférer de Ek à El tous ses éléments y tels que pk ·q(y−xk)−pl ·q(y−xl) < 0.

Comme l’argument vaut pour tout l, les ensembles optimaux sous-jacents sont caractérisés par

y ∈ Ek ⇔ pk · q(y − xk)− pl · q(y − xl) ≥ 0, ∀l �= k

et ils forment une partition de Etot.

La probabilité d’erreur s’exprime sous la forme

Perr =
∑
k

P{y /∈ Ek

∣∣x = xk

} · P{x = xk

}
= 1−

∑
k

P{y ∈ Ek et x = xk

}
= 1− P{y ∈ El et x = xl

}−
∑
k �=l

P{y ∈ Ek et x = xk

}
= 1− pl −

∑
k �=l

(
P{y ∈ Ek et x = xk

}− P{y ∈ Ek et x = xl

})
︸ ︷︷ ︸

∫

Ek

(
pk·q(y−xk)−pl·q(y−xl)

)
dy

en choisissant l arbitrairement dans [1 . . . N ].
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Le détecteur optimal est donc un simple seuil.

Remarque: si les symboles sont équiprobables (pk = pl)

le détecteur optimal correspond au choix naturel du maximum de vraisemblance.

Exemple: le cas Gaussien

Ek

Ek−1

Si l’on suppose que le bruit suit une loi Gaussienne q(b) =
1

σ
√
2π

e−
b2

2σ2

alors le domaine de décision Ek est donné par

pk
1

σ
√
2π

e−
(y−xk)2

2σ2 ≥ pl
1

σ
√
2π

e−
(y−xl)

2

2σ2 ∀l �= k

c-à-d: (y − xk)
2 ≤ (y − xl)

2 − 2σ2 log pl

log pk
∀l �= k

	
max
xl≤xk
l �=k

(
xk+xl

2 + σ2

xk−xl
log pl

pk

)
≤ y ≤ min

xl≥xk
l �=k

(
xk+xl

2 − σ2

xl−xk
log pl

pk

)
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12.2 INFORMATION

Notion d'information 

Entropie d'une source 

Répartitions à entropie maximale 

Information commune
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Notion d'information
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D’autre part, l’information véhiculée par un message constitué de deux messages

indépendants (de probabilité p et q) est bien sûr la somme des deux informations d’où

I(p · q) = I(p) + I(q)

On peut montrer que la seule fonction continue vérifiant cette propriété est nécessairement

proportionnelle à log(p) d’où, si a > 1,

I(p) = − loga(p).

Dans les systèmes de communication, il est essentiel de quantifier l’information. Intuitive-

ment, ce qui est quantifiable dans l’information est relié à la probabilité d’occurrence:

un message dont la probabilité est grande (demain, il fera jour) véhicule peu d’information

un message dont la probabilité est faible (la Suisse sera championne du monde de foot)

en véhicule beaucoup plus

Donc l’information I(p) = fonction décroissante de p.

12-Unser / Sig & Sys II 20

Point de vue de l’ingénieur

Point de vue du physicien

L’information d’un message numérique (∈ N) est le nombre minimal b de bits néces-

saires pour le stocker. Par exemple, pour transmettre d’un message qui peut prendre n

valeurs équiprobables avec 2b−1 < n ≤ 2b; il faut b = 
log n� bits. Comme la probabil-

ité d’un tel message est 1/n, on a

b = 
− log2 p� ≈ − log2 p

dans le cas d’un système de grande capacité.

La notion d’information est intimement liée à l’entropie d’un système physique, une

quantité qui décrit le désordre d’un système ayant un grand nombre de degrés de liberté.

Plus grand est le nombre d’états possibles, plus grande est l’entropie—le désordre—du

système. En thermodynamique, l’entropie est précisément donnée par

S = k log Ω

où k est la constante de Boltzmann et Ω le nombre d’états libres du système.
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Entropie d’une source
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Dans le cas d’une source de messages prenant des valeurs de nature continue, carac-

térisées par une densité de probabilité pX(x), la notion limite d’entropie perd son sens car

−
∑
k

pX(k∆x) ·∆x︸ ︷︷ ︸
pk

log2
(
pX(k∆x) ·∆x

)−−−−−−−−→
∆x→0 +∞

Soit une source de messages décrite par une variable aléatoire X (éventuellement vec-

torielle) prenant des valeurs discrètes xk avec la probabilité pk. Alors l’entropie de la
source est définie comme l’information moyenne par message

HX = −
∑
k

pk log2 pk

La notion appropriée est alors l’ entropie différentielle

HX = −
∫
R

pX(x) log2
(
pX(x)

)
dx

= E

{− log2
(
pX(X)

)}

12-Unser / Sig & Sys II

Répartitions à entropie maximale

Méthode des multiplicateurs de Lagrange: 
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Nombre fini de valeurs possibles

→ la solution est la loi de probabilité uniforme.

On s’intéresse aux variables aléatoires (éventuellement vectorielles) X quantifiées qui

stockent le plus d’information sous différentes contraintes:

nombre fini de valeurs possibles: x ∈ {x1, x2, . . . , xN

}
énergie moyenne finie: E

{‖X‖2} < ∞
positivité et moyenne finie: X ≥ 0 et E

{
X
}
< ∞

On cherche pn maximisant

N∑
n=1

−pn log pn avec la contrainte

N∑
n=1

pn = 1.

∂J

∂pn
= − log pn − 1− λ = 0 ⇒ pn = constante = 1/N

max
pn

N∑
n=1

−pn log pn + λ ·
(
1−

N∑
n=1

pn

)
︸ ︷︷ ︸

J(p1,p2,...,pN )
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Énergie moyenne finie

Lagrange →

→ la solution est la loi de probabilité exponentielle discrète.

Positivité et moyenne finie

Lagrange →

→ la solution est la loi de probabilité Gaussienne discrète.

On cherche pn maximisant
∑
n

−pn log pn avec
∑
n

‖xn‖2pn = E et
∑
n

pn = 1

max
pn

∑
n

−pn log pn + λ ·
(
1−

∑
n

pn

)
+ µ ·

(
E −

∑
n

‖xn‖2pn
)

︸ ︷︷ ︸
J(...,pn,pn+1,...)

max
pn

∑
n

−pn log pn + λ ·
(
1−

∑
n

pn

)
+ µ ·

(
M −

∑
n

xnpn

)
︸ ︷︷ ︸

J(...,pn,pn+1,... )

∂J
∂pn

= − log pn − 1−λ−µxn = 0 ⇒ pn = C · e−µxn = p(xn) avec p(x) = C · u(x)e−µx

On cherche pn maximisant
∑
n

−pn log pn avec
∑

n pn = 1 et
∑
n

xnpn = M où xn ≥ 0

∂J

∂pn
= − log pn − 1− λ− µ‖xn‖2 = 0 ⇒ pn = C · e−µ‖xn‖2

12-Unser / Sig & Sys II

Information commune (ou mutuelle)
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La quantité

Soient deux sources aléatoires X et Y . On peut calculer l’entropie HX,Y du couple (X,Y ),

ou bien calculer l’entropie HX de X et HY de Y séparément.

Si X et Y sont indépendantes alors on a HX,Y = HX +HY . De manière générale, on a

toujours (égalité si et seulement si X et Y sont indépendantes)

HX,Y = E{− log2 pX,Y (X,Y )} ≤ HX +HY

IX,Y = HX +HY −HX,Y

= E

{
log2

(
pX,Y (X,Y )

pX(X) · pY (Y )

)}= HX −HX|Y = HY −HY |X

est alors une mesure de l’information commune entre X et Y . Elle est toujours positive

ou nulle et vérifie
0 ≤ IX,Y ≤ max

(
HX , HY

)
avec égalité si et seulement si il existe une fonction f inversible telle que Y = f(X).

L’information commune peut donc être vue comme une corrélation généralisée.
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12.3 PROCESSUS ALÉATOIRES

Statistique d'ordre 2 

Signaux aléatoires 

Stationnarité, ergodicité 

Temps continu/temps discret 

Densité spectrale de puissance 

Théorème de Wiener-Khintchine 

DSP d'un signal filtré 

Bruit blanc, mouvements Browniens
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Statistique d’ordre 2
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moyenne simple: µX = E

{
X
}

matrice de covariance: CX = E

{
(X −µX)(X −µX)T

}
= E

{
XXT

}−µXµT
X

Il y a plusieurs raisons pour cela

1. On calcule essentiellement des énergies (ou des puissances) dans les systèmes

physiques (lois de conservation).

2. Les calculs d’optimisation de formes quadratiques donnent des systèmes linéaires
“faciles” à analyser et à résoudre.

3. La dualité des énergies dans la transformation de Fourier (Parseval) rendent ces statis-

tiques particulièrement adaptées aux systèmes convolutifs (LIT).

4. Les bruits de nature physique se modélisent par des processus Gaussiens (justification:

théorème central-limite) qui sont complètement décrits par leur statistique d’ordre 2.

5. L’estimation de paramètres linéaires par minimisation aux moindres carrés est optimale
pour les processus Gaussiens.

En traitement des signaux, on se limite le plus souvent aux statistiques d’ordre 1 et 2

de vecteurs (ou signaux) aléatoires complexes dénotés ici par X
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Sa statistique est donc caractérisée par une mesure de probabilité (que l’on n’exprime

jamais) et donc par un opérateur d’espérance. Pour avoir une théorie prédictive, on

peut faire diverses hypothèses probabilistes

la stationnarité au sens strict

l’ergodicité

la stationnarité au sens large

Un signal aléatoire à temps discret X[·] peut se voir comme un vecteur de variables

aléatoires (. . . , X[n− 1], X[n], X[n+ 1], . . . ) de dimension infinie.

Un signal aléatoire à temps continu X(·) est une limite quand T → 0 du signal à

temps discret constitué des échantillons (. . . , X
(
(n−1)T

)
, X

(
nT
)
, X

(
(n+1)T

)
, . . . ).

On parle alors de processus stochastique (ou aléatoire).

L’idée philosophique est que, même si un signal est déterministe, l’absence d’information

sur sa génération incite à le modéliser comme la réalisation d’un tirage aléatoire...
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Stationnarité
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Définition semblable pour les signaux aléatoires complexes, ou discrets, ou les deux.

Un signal aléatoire X(·) est stationnaire au sens strict si et seulement si, quelle que

soit l’espérance calculée, elle est indépendante du point de référence temporel.

(a = t1)

Ainsi, si X(·) est stationnaire au sens strict, alors pour tout n ∈ N on a (signaux réels)

E

{
f
(
X(t1), X(t2), · · · , X(tn)

)}
= E

{
f
(
X(t1 − a), X(t2 − a), · · · , X(tn − a)

)} ∀a ∈ R

= E

{
f
(
X(0), X(t2 − t1), · · · , X(tn − t1)

)}
= fonctions de (t2 − t1, t3 − t1, · · · , tn − t1)

Caractérisation statistique par ρX : R → C

Un signal aléatoire X(·) est stationnaire au sens large (SSL ou WSS) si et seulement

si les moments d’ordre 1 et 2 sont indépendants du point de référence temporel. Donc,

si et seulement si

E

{
X(t)

}︸ ︷︷ ︸
moyenne

statistique de X(t)

= E

{
X(0)

}
= constante ∀t ∈ R

E

{
X(t)X∗(τ)

}︸ ︷︷ ︸
autocorrélation

statistique de X(t)

= E

{
X(0)X∗(τ − t)

}
= ρX(τ − t) ∀t, τ ∈ R
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Remarque: un signal ergodique est automatiquement stationnaire au sens strict (l’inverse

est faux). L’ergodicité est une propriété que l’on supposera toujours en pratique pour les

signaux stationnaires.

temps

pl
us

ie
ur

s 
ré

al
is

at
io

ns
 

d’
un

 p
ro

ce
ss

us
 e

rg
od

iq
ue

t

même statistique

d’où l’utilité d’une notation distincte

Un signal aléatoire X(·) est ergodique ssi toutes ses moyennes statistiques peuvent

être obtenues à l’aide de ses moyennes temporelles équivalentes d’une quelconque de

ses réalisations x(·).

E

{
X(t)︸︷︷︸
variable
aléatoire

}
= lim

A→∞
1

A

A/2∫
−A/2

x(t+ τ)︸ ︷︷ ︸
une réalisation
du processus

aléatoire

dτ

E

{
X(t)X∗(t′)

}
= lim

A→∞
1

A

A/2∫
−A/2

x(t+ τ)x∗(t′ + τ)dτ
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signal de parole: non stationnaire bruit coloré stationnaire

Stationnarité

temps

pl
us

ie
ur

s 
ré

al
is

at
io

ns

t

statistiques différentes

Ergodicité

Signal stationnaire non ergodique

X(t) = AX0(t)

où X0(t) est un processus ergodique et

A une variable aléatoire indépendante de X0(t).
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Preuve:

Preuve:

Les échantillons X[n] = X(nT ) d’un signal stationnaire X(·) à temps continu forment

un signal stationnaire à temps discret.

E

{
f
( · · · , X[n], X[n+ 1], · · · )} = E

{
f
( · · · , X(nT ), X

(
(n+ 1)T

)
, · · · )}

= E

{
f
( · · · , X(nT − a), X

(
(n+ 1)T − a

)
, · · · )} ∀a ∈ R

= E

{
f
( · · · , X(nT − n0T ), X

(
(n+ 1)T − n0T

)
, · · · )} ∀n0 ∈ Z

= E

{
f
( · · · , X[n− n0], X[n+ 1− n0], · · ·

)} ∀n0 ∈ Z

Au contraire, l’interpolation Xint(t) =
∑

n X[n]ϕ(t/T − n) d’un signal discret sta-

tionnaire X[n] n’est en général pas stationnaire, sauf si ϕ(t) = sinc(t) (SSL).

T = 1 sans perte de généralité

∑
n∈Z

sinc(t′ −m− n)sinc(t− n) =

∫
R

sinc(t′ −m− τ)sinc(t− τ)dτ =
(
sinc ∗ sinc

)︸ ︷︷ ︸
=sinc

(
(t′ − t)−m

)

E

{
Xint(t)X

∗
int(t

′)
}
=
∑
n,n′

E

{
X[n]X∗[n′]

}︸ ︷︷ ︸
ρX [n′−n]

ϕ(t− n)ϕ(t′ − n′)

=
∑
m∈Z

ρX [m]
∑
n∈Z

ϕ(t′ −m− n)ϕ(t− n)

Or, on sait que si x(t) and y(t) sont à bande limitée dans [−π, π], alors
∑
n∈Z

x(n)y∗(n) =
∫
R
x(τ)y∗(τ)dτ .

En prenant x(τ) = ϕ(t′ −m− τ), y(τ) = ϕ(t− τ) et ϕ = sinc, on obtient alors

d’où finalement E
{
Xint(t)X

∗
int(t

′)
}
=
∑
m∈Z

ρX [m]sinc
(
(t′ − t)−m

)
= fonction de (t′ − t).
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Remarque: définition équivalente pour les signaux à temps discret en remplaçant la

transformée de Fourier par la DTFT.

Une réalisation x(·) d’un signal aléatoire stationaire X(·) n’a pas de transformée de

Fourier exploitable car, a priori, x(·) /∈ L1(R). Mais on peut rendre le signal à support

borné en le multipliant par une fenêtre rectangulaire de taille A

XA(t) = rect(t/A) ·X(t)

Interprétation: P = limA→∞ 1
A

∫ +A/2

−A/2
|x(t)|2dt est l’énergie moyenne du signal par unité de

temps, c-à-d sa puissance moyenne. En utilisant Parseval

E{P} = lim
A→∞

1
2πA

∫
R

E{|X̂A(ω)|2}dω = 1
2π

∫
R

SX(ω)dω

On peut dès lors calculer la transformée de Fourier x̂A(ω) = F{xA}(ω) de toute réali-

sation xA(·) ce qui donne un sens à X̂A(ω) = F{XA}. La densité spectrale de puis-

sance (DSP) SX(ω) du processus X(t) est alors donnée par la limite (si elle existe)

SX(ω) = lim
A→∞

1
A E

{|X̂A(ω)|2
} ≥ 0

De même,
∫ ω2

ω1
SX(ω)dω2π est la contribution des fréquences [ω1, ω2] à la puissance moyenne du

signal → densité spectrale de puissance.
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Dans ce cas bien sûr, la DSP devient une matrice. Si X(t) =
(
X1(t), X2(t)

)
, on a

SX(ω) =

(
SX1

(ω) SX1,X2
(ω)

SX2,X1
(ω) SX2

(ω)

)

On peut aussi définir une version généralisée de la DSP dans le cas de signaux vectoriels

X(·) = (
X1(·), . . . , XN (·)) (application aux multicapteurs)

SX(ω) = lim
A→∞

1
A E

{
X̂A(ω)

(
X̂A(ω)

T
)∗}

Une extension naturelle de la densité spectrale de puissance est la densité spectrale de

puissance croisée entre deux signaux aléatoires

SX,Y (ω) = lim
A→∞

1
A E

{
X̂A(ω) · Ŷ ∗

A(ω)
}
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Preuve:

De même, pour un signal à temps discret X[·] avec X̂A(e
jω) =

∑+A/2
n=−A/2 X[n]e−jωn, on a

lim
A→∞

1
A E{|X̂A(e

jω)|2} = SX(ejω) =
∑
n∈Z

ρX [n]e−jωn = Fd{ρX}(ω).

Autocorrelation statistique d’un signal SSL : ρX(t) = E{X(τ)X∗(t+ τ)}, ∀τ ∈ R

Théorème (Wiener-Khintchine, 1934)

La DSP d’un signal stationnaire au sens large X(t) (réel) est la transformée de

Fourier de la fonction d’autocorrélation statistique de ce signal

SX(ω) =

∫
R

ρX(t)e−jωtdt = F{ρX}(ω).

1
A E

{|X̂A(ω)|2
}
= 1

A E

{ ∫
R

X(t)rect(t/A)e−jωtdt

∫
R

X∗(t′)rect(t′/A)ejωt′dt′
}

= 1
A

∫
R

∫
R

rect(t/A)rect(t′/A) · E
{
X(t)X∗(t′)

}︸ ︷︷ ︸
ρX(t′−t)

e−jω(t−t′)dtdt′

=

∫
R

ρX(−u)e−jωu

∫
R

rect(u/A+ u′)rect(u′)du′︸ ︷︷ ︸
=(rect∗rect)(u/A)

du (après ch. de variables u = t− t′, u′ = t′/A

=

∫
R

tri(u/A)ρX(−u)e−jωudu avec ρX(−u) = ρX(u) (signal réel)
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En fait, on peut généraliser encore plus et considérer des signaux vectoriels X(·) =(
X1(·), . . . , XN (·)) SSL. Le théorème de Wiener-Khintchine s’écrit alors encore

SX(ω) =

∫
R

RX(t)e−jωtdt =

∫
R

E

{
X(0)

(
X(t)T

)∗}
e−jωtdt

Fonction matricielle d’intercorrelation

RX : R → C
N×N avec [RX(t)]m,n = E{Xn(0)X

∗
m(t)} = ρXn,Xm

(t).

Une généralisation de ce théorème est facile pour les densités spectrales de puis-

sance croisées pour des signaux X(·), Y (·) SSL

SX,Y (ω) =

∫
R

ρX,Y (t)e
−jωtdt

où ρX,Y (t) = E{X(τ)Y ∗(t+ τ)
}
, ∀τ ∈ R (fonction d’intercorrélation).
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En dimension fini (par linéarité)

E

{( M∑
m=1

amXm)
( N∑
n=1

bnYn

)}
= E

{
M∑

m=1

N∑
n=1

ambnXmYn

}
=

M∑
m=1

N∑
n=1

ambn E{XmYn}︸ ︷︷ ︸
Cov(Xm,Yn)

Hypothèses: h, g, ρX,Y ∈ L1(R)Preuve:ρU,V (τ) = E

{∫
R

h(t)X(0− t)dt

∫
R

g∗(t′)Y ∗(τ − t′)dt′
}

=

∫
R

∫
R

h(t)g∗(t′)E {X(−t)Y ∗(τ − t′)}︸ ︷︷ ︸
ρX,Y (τ−t′+t)

dtdt′

=

∫
R

(∫
R

h(t′ − u)g∗(t′)dt′︸ ︷︷ ︸
chg(u)=(h∨∗g∗)(u)

)
ρX,Y (τ − u)du =

(
(h∨ ∗ g∗) ∗ ρX,Y

)
(τ)

Filtrage et intercorrélation

Fonction d’intercorrelation de deux processus stochastiques SSL X(·) et Y (·):
ρX,Y (τ)

�
= E{X(0)Y ∗(τ)} = E{X(t)Y ∗(τ + t)}, ∀t ∈ R

Signaux filtrées: U(t) = (h ∗X)(t), V (t) = (g ∗ Y )(t)

Fonction d’intercorrelation après filtrage

ρU,V (τ) = E{U(0)V ∗(τ)} =
(
h∨ ∗ g∗ ∗ ρX,Y

)
(τ) où h∨(t) = h(−t)

changement de variable: u = t′ − t



12-Unser / Sig & Sys II

Densité spectrale d'un signal filtré

Graphiquement:
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Preuve:

x(t) y(t)
h(t)

ρY (t)ρX(t)

Étant donné un signal SSL réel X(t), le signal filtré Y (t) = (h∗X)(t) est également SSL

(exercice!). Les densités spectrales de puissance de X(t) et Y (t) sont alors reliées par

SY (ω) = |H(ω)|2SX(ω)

h∨ ∗ h

ρY (t) = E

{
Y (0)Y (t)

}
= E

{ ∫
R

h(τ)X(−τ)dτ

∫
R

h(τ ′)X(t− τ ′)dτ ′
}

=

∫
R

∫
R

h(τ)h(τ ′)E
{
X(−τ)X(t− τ ′)

}
dτdτ ′

=

∫
R

∫
R

h(τ)h(τ ′)ρX(t− τ ′ + τ)dτdτ ′

=

∫
R

∫
R

h(τ)h(τ ′)
(

1
2π

∫
R

SX(ω)ejω(t−τ ′+τ)dω

)
dτdτ ′

=

∫
R

(∫
R

h(τ)ejωτdτ
)(∫

R

h(τ ′)e−jωτ ′
dτ ′

)
1
2πSX(ω)ejωtdω

= 1
2π

∫
R

H∗(ω) H(ω) SX(ω)ejωtdω = 1
2π

∫
R

SY (ω)e
jωtdω

ρY (t) = (h∨ ∗ h ∗ ρX)(t)

F{h∨ ∗ h}(ω) = H∨(ω)H(ω)

= H∗(ω)H(ω)

= |H(ω)|2
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Caractériser le bruit à temps discret comme bruit blanc est souvent une hypothèse

“relativement” réaliste qui simplifie énormément les calculs.

Un tel signal est donc d’énergie infinie (idéalisation) et ses échantillons sont décor-
rélés, aussi proches soient-ils. Son utilité pratique est de pouvoir représenter/générer

toutes sortes de processus stochastiques physiques par filtrage (bruit coloré).

Cas du temps continu

Un bruit blanc B(·) est l’idéalisation mathématique d’un signal stationnaire à moyenne

nulle dont la DSP est constante

SB(ω) = σ2
0 ⇔ ρB(t) = σ2

0 · δ(t)

Un bruit blanc discret B[·] est un signal de moyenne nulle, stationnaire, caractérisé par

l’indépendance de ses échantillons. En particulier, ceci implique

ρB [n] = σ2
0 · δ[n] =

0, si n �= 0

σ2
0 , si n = 0

(décorrélation)

Dans ce cas aussi, on a SB(e
jω) = Fd{ρB} = σ2

0 .
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h(t)
B(t) X(t) = (h ∗B)(t)

bruit blanc Gaussien

Densités spectrales de puissance

SB(ω) = σ2
0

SX(ω) = σ2
0 · |H(ω)|2 “spectral shaping”

Génération de signal aléatoire par filtrage d’un bruit blanc

Unser and Tafti
An Introduction to 
Sparse Stochastic Processes

Généralisation pour processus non-Gaussiens et non-stationnaires:

Fonctions d’autocorrelation

ρB(t) = E{B(0)B(t)} = σ2
0 δ(t)

ρX(t) = E{X(0)X(t)}
= (h∨ ∗ h ∗ ρB)(t) = σ2

0 (h
∨ ∗ h)(t) où h∨(t) = h(−t)
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Transformée de Fourier (au sens des distributions): X̂(ω) = F{X}(ω) ∈ S ′(R)

Interprétation: La transformée de Fourier diagonalise la fonction d’autocorrélation d’un signal SSL.
Ceci implique que les composantes spectrales d’un processus stationnaire Gaussien sont 
indépendantes (transformation de Karhunen-Loève).

Preuve formelle:

E{X̂(ω)X̂∗(ξ)} = E

{∫
R

X(t)e−jωtdt
(∫

R

X(τ)e−jξτdτ
)∗}

=

∫
R

∫
R

e−jωt
E{X(t)X∗(τ)}ejξτdtdτ =

∫
R

∫
R

e−jωtρX(τ − t)ejξτdtdτ

=

∫
R

ejξτe−jωτdτ

∫
R

ρX(−u)e−jωudu = F{ejξ·}(ω) F{ρ∨X}(ω) = 2πδ(ω − ξ) SX(ω)

Changement de variable: u = t− τ

Fonction d’autocorrélation spectrale: (ω, ξ) �→ E{X̂(ω)X̂∗(ξ)} ∈ S ′(R× R)

Théorème (Gelfand 1955)

Soit X(t) un processus stationnaire au sens large à valeur moyenne nulle. Alors

E{X̂(ω)X̂∗(ξ)} = 2πδ(ω − ξ) · SX(ω).

La transformée de Fourier généralisée de X(·) est donc parfaitement décorrélée

mais avec une variance “infinie” proportionnelle à SX(ω) = F{ρX}(ω).
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Le mouvement Brownien standard est l’intégrale d’un bruit blanc à temps continu. C’est un processus

Gaussien tel que

E

{|X(t)−X(t′)|2} = C · |t− t′|

Il n’est pas stationnaire, mais ses accroissements le sont. Certains signaux naturels sont des mouvements

Browniens
(
agitation des microparticules dans un liquide (cf. A. Einstein)

)
.

Le mouvement Brownien fractionnaire est une extension du précédent: c’est toujours un processus

Gaussien mais ses accroissements obéissent à une loi différente

E

{|X(t)−X(t′)|2} = C · |t− t′|2H

où 0 < H < 1 est l’“exposant de Hurst”. Nombreuses applications pour modéliser des phénomènes de

croissance (e.g., fractales).

Unser / Sig & Sys II 12-

12.4 FILTRAGE DE SIGNAUX BRUITÉS

Estimation de signaux 

Filtrage accordé 

Minimisation de la puissance moyenne de l’erreur 

Filtre de Wiener-Hopf

42
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Densité spectrale de puissance

SX(ω) = lim
A→∞

1

A
E{|X̂A(ω)|2} avec X̂A(ω) =

∫ A/2

−A/2

X(t)e−jωtdt

Théorème de Wiener-Khintchine

SX(ω) =

∫
R

ρX(t)e−jωtdt = F{ρX}(ω)

⇒ E{|X(t)|2} =
1

2π

∫
R

SX(ω)dω (énergie moyenne du signal)

Le processus X(·) (réel) est stationnaire au sens large (SSL) ssi:

∀t ∈ R : E{X(t)} = µX = Constante

∀t, t′ ∈ R : E{X(t)X(t′)} = ρX(t′ − t) = ρX(t− t′)

Fonction d’autocorrélation statistique ρX : R → R

ρX(τ)
�
= E{X(0)X(τ)} = E{X(t)X(τ + t)}, ∀t ∈ R
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Estimation de signaux

x(t)︸︷︷︸
signal émis

b(t)︸︷︷︸
bruit

y(t)︸︷︷︸
signal reçu

= x(t) + b(t)
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Description du problème  
Un récepteur reçoit un signal, constitué du signal émis à retrouver et d'un bruit, caractéristique du 
processus de transmission-réception. On supposera toujours ici que le bruit perturbe le signal de 
manière additive, qu'il est décorrélé du signal et de moyenne nulle. 

La sévérité de la perturbation est quantifiée par son rapport signal à bruit (RSB),  
souvent exprimé en décibels 

  

 

 
 

 
 
RSBdB = 0 dB

x(t)
b(t) x(t) + b(t)

RSBdB = 10 · log10

(
E{|X(t)|2}
E{|B(t)|2}

)
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Preuve: 

avec égalité (réponse max) si et seulement si 

 (Cauchy-Schwarz)
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et si le bruit est blanc, alors (filtre accordé) ⇒ h(t) = ϕ(−t) = corrélateur

puissance du bruit inchangée ⇔ 1
2π

∫
R

SB(ω)dω = 1
2π

∫
R

|H(ω)|2SB(ω)dω

Si le signal en entrée est de nature discrète, par exemple x(t) =
∑N

n=1 f [n]ϕn(t− tn)

alors on cherche un filtre qui amplifie le plus possible l’amplitude de l’impulsion ϕn(· − tn)

en gardant le bruit à un niveau constant. Ceci permet de garantir une détection maximale

par seuillage (cas de données quantifiées).

(
h ∗ ϕ(· − tn)

)
(tn) = (h ∗ ϕ)(0) = 1

2π

∫
R

H(ω)Φ(ω)dω = 1
2π

∫
R

H(ω)
√
SB(ω) ·

(
Φ∗(ω)√
SB(ω)

)∗
dω

≤ 1
2π

√∫
R

|H(ω)|2SB(ω)dω︸ ︷︷ ︸√∫
R
SB(ω)dω

·
√∫

R

|Φ(ω)|2
SB(ω)

dω

H(ω)
√
SB(ω) = λ

Φ∗(ω)√
SB(ω)

Pour x(t) = f [n]ϕ(t − tn) (impulsion unique), le filtre optimal (à un facteur d’amplitude

près) est
H(ω) =

Φ∗(ω)
SB(ω)

avec Φ = F{ϕ}

12-Unser / Sig & Sys II

signal bruité

filtrage accordé
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y(t) =
∑
n

f [n]ϕ(t− n) + b(t)

h(t) = ϕ(−t)

⇔ {ϕ(· − n)}n∈Z est une base orthonormale.

Le filtrage accordé assure qu’aux instants d’échantillonnage, le rapport signal à

bruit sera maximisé, facilitant ainsi la détection. Mais il n’assure pas que les valeurs

échantillonnées reçues égalent les valeurs échantillonnées émises: pour cela, il faut

que (ϕ ∗ ϕ∨)(t)|t=n = 〈ϕ,ϕ(· − n)〉 = δ[n].
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Dérivation:

Minimisation de la puissance moyenne de l'erreur
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h(t)x(t) x̃(t)y(t)

b(t)

E

{∣∣X̃(t)−X(t)
∣∣2} = E

{∣∣(h ∗X)(t)−X(t) +
(
h ∗B)(t)∣∣2}

= E

{∣∣(h ∗X)(t)−X(t)
∣∣2}︸ ︷︷ ︸

E

{∣∣(h(t)−δ(t)
)
∗X(t)

∣∣2}
+E

{∣∣(h ∗B)(t)∣∣2} (indépendance entre X(t) et B(t))

= 1
2π

∫
R

(∣∣H(ω)− 1
∣∣2SX(ω) + |H(ω)|2SB(ω)

)
dω (Wiener-Khintchine)

On souhaite trouver un filtre qui, appliqué à une réalisation de Y (·) = X(·) +B(·),
élimine le plus de bruit possible et conserve le mieux possible le signal.

On veut plus précisément minimiser la puissance moyenne de l’erreur E(t) = X̃(t)−X(t),

c-à-d

E

{|E(t)|2} = 1
2π

∫
R

(|H(ω)− 1|2SX(ω) + |H(ω)|2SB(ω)
)
dω
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Filtre de Wiener-Hopf
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On suppose maintenant que l’on connait à la fois SX(ω) et SB(ω), qui sont la DSP du

signal et celle du le bruit. Il s’agit donc de minimiser par rapport à H(ω) l’intégrale

E = 1
2π

∫
R

(|H(ω)− 1|2SX(ω) + |H(ω)|2SB(ω)
)
dω

Par cela, on remarque que

2πE =

∫
R

(
SX(ω) + SB(ω)

)∣∣∣∣∣H(ω)− SX(ω)

SX(ω) + SB(ω)

∣∣∣∣∣
2

dω +

∫
R

SX(ω)SB(ω)

SX(ω) + SB(ω)
dω

≥
∫
R

SX(ω)SB(ω)

SX(ω) + SB(ω)
dω

avec égalité uniquement si H(ω) = HW (ω) où

HW (ω) =
SX(ω)

SX(ω) + SB(ω)

est le filtre de Wiener-Hopf, aussi appelé filtre de Wiener.
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Filtre de Wiener vs. filtre idéal
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Pour les fréquences ω où SX(ω) � SB(ω), on a HW (ω) ≈ 1, et les fréquences

où SX(ω) � SB(ω) alors HW (ω) ≈ 0. Donc, l’avantage que l’on peut espérer par

rapport à un filtrage idéal est limité aux cas où SX(ω) et SB(ω) sont du même ordre

de grandeur (faible RSB).

Filtre de Wiener

HW (ω) =
SX(ω)

SX(ω) + SB(ω)
≤ 1
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Processus stochastiques discrets
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Densité spectrale de puissance (2π-périodique)

SX(ejω) = lim
K→∞

1

2K
E{|X̂K(ejω)|2} avec X̂K(ejω) =

K∑
n=−K

X[n]e−jωn

Théorème de Wiener-Khintchine discret

SX(ejω) =
∑
n∈Z

ρX [n]e−jωn = Fd{ρX}(ω)

⇒ E{|X[n]|2} =
1

2π

∫ π

−π

SX(ejω)dω (énergie moyenne du signal)

Fonction d’autocorrélation statistique discrète ρX : Z → R

ρX [n]
�
= E{X[0]X[n]} = E{X[m]X[m+ n]}, ∀m ∈ Z

Le processus X[·] (réel) est stationnaire au sens large (SSL) ssi:

∀n ∈ Z : E{X[n]} = µX = Constante

∀m,n ∈ Z : E{X[m]X[n]} �
= ρX [n−m] = ρX [m− n]
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Filtrage statistique en temps discret
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Bruit blanc discret: B[·] SSL à moyenne nulle avec SB(e
jω) = σ2

0

⇔ E{B[n]} = 0 et E{B[n]B[n′]} = σ2
0δ[n− n′]

Filtre de Wiener discret: HW (ejω) =
SX(ejω)

SX(ejω) + SB(ejω)

Modèle stochastique de mesure: Y [n] = X[n] +B[n]

Estimateur: X̃[n] = (hW ∗ Y )[n] tel que E{|X̃[n]−X[n]|2} minimum

Somme de processus aléatoires mutuellement indépendants

X[·] et Y [·] SSL à moyenne nulle avec E{X[m]Y [n]} = 0, ∀m,n ∈ Z

⇒ X[·]+Y [·] SSL à moyenne nulle avec DSP SX+Y (e
jω) = SX(ejω)+SY (e

jω)

Filtrage réel d’un processus stochastique SSL : Y [n] = (h ∗X)[n]

X[·] SSL ⇒ Y [·] SSL

ρY [n] = (h∨ ∗ h ∗ ρX)[n] avec h∨[n] = h[−n]

SY (e
jω) = |H(ejω)|2SX(ejω)


